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OPTIMAL INTERPLANETARY SPACECRAFT
TRAJECTORIES VIA A PARETO GENETIC ALGORITHM

John W. Hartmann’
Victoria L. Coverstone-Carroll’
Steven N. Williams"”

A Pareto genetic algorithm is applied 1o the optimization of low-thrust
interplanetary spacecraft trajectories. A multi-objective, nondominated
sorting genetic algorithm is developed following existing methodologies.
A hybridized scheme is designed integrating the Pareto genetic
algorithm with a calculus-of-variations-based trajectory optimization
algorithm. “Families™ of Pareto optimal trajectories are generated for the
cases of kEarth-Mars flyby and rendezvous trajeclories. A novel trajectory
type generated by the Pareto algorithm is expanded to develop a series
of versatile, high-performance Earth-Mars rendezvous trajectories.

INTRODUCTION

Low-thrust Trajectory Optimization

In recent years, pressure to reduce the costs of interplanetary missions bas led to a
heightened emphasis on designing missions with shorter flight times, smaller launch
vehicles, and simpler flight svstems. These requirements have renewed interest m low-
thrust propulsion systems due to their high propelant efficiencics; however, the need 1o
optimize the continuous thrust profiles inherent to these systems presents new challenges to
trajectory designers. Trajectory optimization techniques currently in use need only model a
series of discrete events: launch and planetary flyby times (including characteristics of the
flyby trajectory), plus any deep space maneuvers which may be required. This is by no
means a trivial exercise when complicated multiple gravity-assist trajectories  are
considered. but the additional requirement of optimizing a continuous thrust profile
severely strains, and in many cases exceeds the capability of traditional technigues.

Project Overview

Current working methods for low-thrust trajectory optimization arc calculus-of-
variations-based. This formulation typically has difficulty with longer, more complicated
trajectories, and can expend large amounts of time executinginefficient searches. An on-
going joint research venture being conducted between the Jet Propulsion Laboratory (JPL)
and the University of lIllinois at Urbana-Champaign’s Computational Astrodyvnamics
Research Laboratory (UIUC CARL) is investigating alternative methodologies in an
altempt lo discover new, more robust, and more efficient optimization algorithms.
Automation of the optimization process using stochastic search techniques (e.g..
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simulated annealing and genetic algorithms) to drive the current optimization software is a
major topic of research.

In this paper. a Pareto genctic algorithm is developed following existing
methodologies' to perform a multi-objective optimization for low-thrust orbit transfers,
expanding the previous work of Ref. 2. The optimizavon techuiques discussed address
the problem of low-thrust trajectory optimization, and provide for the generation of optimal
sets or “families™ of these trajectories. Generation of a trajectory family is accomplished
by sorting the population according to an individual's Pareto optimality.  Such sets
tlustrate the relationships between different flight characteristics, and provide compromise
solutions when maximam performance (i.c. mass delivered to destination) is one of several
requirements. Additionally, the new method provides increased robustness through its
inherent separation of objectives and eliminates the objective conflict® which arises from
classical techniques involving scalarization of multiple objectives, where improper
assignment of weighting factors can result in a bias towards certain objectives. The Pareto
genetic algorithm is then combined with existing JPL trajectory optimization software in a
hybridized manner to produce a more informed search, along with familiar and usable
results.

PARETO OPTIMIZATION

Multi-Objective Optimization

Multi-objective optimization, as its name implies, ditfers from single-objective
optimization in that the intent is to optimize a system with more than one objective. As
in single-objective optimization, the objective(s) may have any number of equality or
inequality constraints imposed upon thern. This can be represented mathematically as®,

Minimize/Maximize f{(x) i=12,..N
Subject to g(x)s0 J=12_..F
hk(x) =10 k=12,.K (l)

Rather than searching for the solution which vields the globally maximal (or minimal)
value for a single objective, the “best™ solution is found by simultaneously optimizing
several objectives. These types of optimization problems have traditionally been solved
by averaging each objective with a weighting factor, then combining the objectives into a
single scalar objective. Such reduction technigues eliminate the need for a more complex
multi-objective algorithm, but introduce new parameters in the form of weighting factors.”
Individual solutions are highly sensitive to the magnitudes of these weighting factors. The
user must become familiar with the exact relationship between objectives in order to
determine the proper weighting values that will yield the desired result. Determination of
the correct weighting factors can. in fact, become an optimization process of its own.
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In addition, the result of the optimization will be a single solution rather than a set
of compromise solutions illustrating the relationship between different objectives. This is
acceptable for cases in which optimality of all objectives coincide in the same solution,
but in most cases where adjustments beneficial to one objective are detrimental to others,
such a technique provides only a single point on what may be an expansive “front™ of
possible solutions. In the case of genetic algorithius in particular, such a formulation fails
to take advantage of the population-based nature of the technique. It therefore becomes
desirable to develop a more robust multi-objective algorithm, capable of identifving the
trades between objectives and able to make better use of the pOanlat}onl-l)ased GA to
produce sets of optimal solutions.

Genetic Algorithms

Genetic algorithms are an optimization procedure based on natural selection and
Darwinian genetics.® These algorithms differ from the more traditional optimization
techniques in that they work with a coding of the parameter set (usually binary) instead
of the parameters themselves, they search from a population of poiuts instead of a single
point, they use only the objective function evaluation instead of derivatives or other
auxiliary knowledge, and they use probabilistic transition rules instead of deterministic
rules. A population of individual solutions is evolved over a series of gencrational cycles,
cach undergoingalterations to their respective parameter set, or “genotype,” and fitness
valug, or “phenotype.”

The genetic algorithm used in this paper employs the standard operators of
selection, ¢ross-over, and mutation to perform the evolutionary search. Selection is the
process of choosing two solutions on which cross-over of information may occur. Cross-
over is used to create new solution strings or “children™ from existing “parent” strings. A
string is a binary representation of all the independent vanables. Through cvoss-over,
beneficial information encoded in the parents have a chance to propagate to future
solutions. The role of mutation is mainly that of protecting the population of solutions
against irrevocable Josses of potentially helpful information that mayv be lost in weak
individuals. Mutation also protects and provides diversity within the population.

“Niching™ or “fitness sharing™is a supplemental strategy which is also used to
promote diversity. In this procedure, solutions are penalized according to their degree of
similarity to others in the population in an attempt to distribute members over large
portions of the search space and avoid premature convergenceto a single solution. The
population is examined on a per individual basis to determine the number of other
members that reside within the veighborhood of the current examinee. The size of this
neighborhood is determined by the niching control parameter, Ggae. A penalty value is
associated with each individual residing within this neighborhood. The magnitude of the
penalty is govemed by a sharing function whose value falls off as proximity to the
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examineedecreases by the power o. the second of two niching parameters. A value of
=1 corresponds to a linear reduction in magnitude, with the effective penalty
approaching zero as indjvidual proximity approaches the neighborhood boundary. Ggpye.
The number of individuals residing within this defined neighborhood and their
corresponding penalties are tallied, and the cwrent examinee’sfitness is penalized by an
amount proportional to that number at the end of each generational cycle. For a more
complete discussion of genetic algorithms and niching, see Ref. 5.

Pareto Optimality

Pareto optimization is the principle of optimizing multiple competing objectives.
The problem is essentially one of finding optimal solutions based on criteria that have
inverse relationships. The problem was succinctly described by Edwin Dean®:

A Pareto optimal solution is not unique, but is a member of a set of such
points which are considered equally good in terms of the vector objective.
This space may be viewed as a space of compromise solutions in which
each objective could be improved upon, but if it was, it would be improved
at the expense of at least one other objective.

Another way of stating this would be to say that a solution is Parcto optimal, or
“nondominated,” for a given set of objectives if there is no other existing solution which is
superior to that solution in @/l objectives. If a solution exists which is superior in some
objectives, then that solution may constitute a point on a front of Parcto optimal
solutions. Take for example the problem of minimizing both coordinates for a set of
powts, {(0.5),(1,3),(2,4)}. Point 1 is dominated by points 2 and 3 in its second
coordinate; however, it dominates points 2 and 3 with respect to the first coordinate, and
tberefore is nondominated. Point 2 is dominated neither by point 1 nor point 2 since it is
superior to these two with regard to its second coordinate, and thus is also nondominated.
Point 3, while superior to point 1 in its second coordinate, is dominated with respect to
both coordinates by point 2, therefore it is a dominated individual and not Pareto optimal.

The Pareto Genetic Algorithm

The algorithm devised in this study is based on the concept of nondominated
sorting originally conceptualized by Goldberg® and developed by Srinivas and Deb' as the
Nondominated Sorting Genetic Algorithm (NSGA). The NSGA is not an entirely new
optimization algorithm, but rather a modification to the fitness evaluation procedures that
exist in standard genetic algorithms. It is in somc scnsc a supplement to a genetic
algorithm that allows for a more eftective means of multi-objective optimization.

Tbe NSGA uses the concept of nondominance to sort through a population of
possible solutions, assigning each member to a Paveto optimal “front™ according to their
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level of nondominance. The process consists of two iterated steps.  The population is
first sorted. and those individuals that are nondominated are assigned an artificial fitness
associated with theicr level of Pareto optimality.  For the first iteration of the non-
dominated sorting routine, the fitness value assigned establishes non-dominated members
as possessing the highest level of Pareto optimality in the population at large. After
assignmept to a front, fitness sharing (or niching) is applied to these individuals where
artificial fitness is adjusted according to solutions’ proximity to one another in an attempt
to evenly distribute individuals across the Pareto front.

After sharing, the minimal fitness in the current front is determined. This fituess
15 then slightly reduced and used as the initial artificial fitness for the next front in the next
iteration of the sorting routine. During this iteration and all subsequent ones, individuals
previously tagged as non-dominated and assigned to a specific front are excluded from
cxamination and the remaining subpopulation is examined to determine the next subgroup
of non-dominated solutions. The nondominated sorting process continues this iterative
evaluation of subpopulations until all individuals in the population are assigned to a
specific front and given a fitness value.

The benefits of incorporating a Pareto search algorithm in the trajectory
optimization process are twofold: i.) elimination of the problems encountered in classical
multi-objective optimization methodologies such as objective conflict, and ii.)
development of a Pareto optimal front of solutions, providing an array of compromise
solutions.  When applied to the population-based genetic algorithm, these Pareto
concepts should enable automatic generation of Pareto optimal solutions. In the context
of spacecraft trajectory optimization discussed in this study, a Pareto genetic algorithm
should provide the mission designer the capability of generating “families” of optimal
trajectories illustrating the trades between defined objectives.

VERIFICATION OF ALGORITHM PERFORMANCE

A set of test functions comprised of those found in the literature as well as some
of original design were used to test the NSGA. Six diagnostic test functions in all were
used: three functions from the Srinivas and Deb test suite to test replication of
performance, along with three new functions designed to test previously undemonstrated
capabilities' required for the trajectorv optimization work in this study: optimization of
problems with more than two objectives, and with objectives of both minimizing and
maximizingtype. In order to facilitate comparison, values for main control parameters
were assigned the same values as those used in the original NSGA study."”’

The test functions considered verified that the version of nondominated sorting
algorithm developed in this study performs accurately. Tests to identify Pareto optimal
regions for more than two objectives, as well as those to verify the NSGA's ability to
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handle combinations of optimization types were successtul. For further details of these
verification tests, see Retl. 7.

NSGA/SEPTOP HYBRIDIZATION

The algorithm formulated for the application of trajectory optimization docs not
consist solely of thc Pareto genetic algorithm coupled with a function evaluation
subroutine. It is a hybridization of the nondominated sorting genctic algorithm and the
calculus-of-variations-based trajectory optimizer, SEPTOP.® The NSGA is used as a
driver for the SEPTOP software, essentially automating the optimjzation process by
acting as a kind of “smart” user.

A Brief Description of SEPTOP

SEPTOP (Solar Electric Propulsion Trajectory Optimization Program) is a
preliminary mission planning tool that uses a two-body, Sun-centered. low-thrust solar-
electric propulsion model. Classical Calculus-Of-Variations (COV) is used to obtain a
maximum final (burnout) ruass, resulting in a Two-Point-Boundary Value Problem
(TPBVP). The user provides initial estimates tor costates (Lagrangemultipliers) and the
state and costate differential equations are forward integrated. Terminal constraints on
the states and costates that result from the COV formulation must be satistied. The
convergence of SEPTOP to an optimal trajectory can be highly dependent on the user’s
initial guess and the relative difficulty of the mission. As the number of intermediate
planctary flybys and total number of revolutions about the sun is incrcased. the user’s
initial guess must move closer to their converged values for the TPBVP to be successfully
solved.

The Nondominated Sorting “Memetic” Algorithm

The NSGA evolves populations of individuals representing possible trajectories,
with input parameters for SEPTOP being encoded as each individual’s genotype. These
wput parameters include the Lagrange multiplier values associated with a given trajectory,
as well as the total time of flight. Tndividual fitness is evaluated through a call to SEPTOP
using the input parameters encoded within. SEPTOP is run for a set number of iterations,
effectively executinga localized search for each member in an attempt to better identify
any basins of attractions which might exist in the individual's immediate vicinity. The
improved fitness - if any improvement was seen - is returned to the NSGA in the form of
an objective vector containing the values for each objective in the multi-objective
optimization. The individual is thus assigned a new phenotype. The new SEPTOP input
parameters associated with the improved solution are not returned as the individual’s new
parameter set. i.c. genotype. This is done in an attempt to maintain a greater amount of
diversity in the population’s gene pool.

The procedures just catalogued describe what might be termed a “menetic”
algorithm - a genetic algorithm coupled with a non-genetic localized search algorithm to
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improve individual characteristics” - employing a “Baldwinian Jearning strategy.”'” This
terminology is derived from the study of memctics which theorizes that ideas can cvolve
in ways analogous to biological evolution.'' The algorithm used in this study might then
be labeled the nondominated sorting memeric algorithm. The specific characteristics
returned from the improved individual constitute the tvpe of learning strategy
implemented. In a  Baldwinian lcarning strategy, only the improved phenotype is
recorded,

Within this structure, the SEPTOP software is programmed to return the
following four parameters: mass delivered, time of flight. number of heliocentric
revolutions. and SEPTOP convergence error (a normalized representation of the degree of
convergence). Three of the parameters - mass delivered. time of flight, and number of
heliocentric revolutions - are modeled as objectives, and the fourth - SEPTOP convergence
error - modeled as one of tuee constraints. The additional two constraints limit
population members through user-specification of a trajectory type, establishing upper
and lower bounds on the allowable number of heliocentric revolutions for a given
trajectory. This added control enables the user to implement any prior understanding of
the “physics™ of the problem to narrow the search space - which might otherwisc be
overly expansive - to a region that one expects the solution to fall. Trajectory types are
detined by increments of one half of a heliocentric orbit, e.g. type I corresponds to 0.0-0.3
revolutions, type Il to 0.5-1.0 revolutions, etc. These constraints are applicd at the end
of the evaluation procedure using appended penalty terms.

The tade relationship between the two objectives, mass delivered and time of
flight, is the key focus of this study. The addition of the third objective of maximizing
heliocentric revolutions is employed as a strategy for obtaining viable solutions. When
the program is initiated, the solution space is populated almost exclusively with
individuals far from convergence (i.c. trajectories whose final states do not closely match
the final boundary conditions). Beginning with a fixed initial mass, many trajectories exist
which may be evaluated as Pareto optimal despite their degree of convergence due to very
short flight times and /or minimal thrusting. These are uninteresting solutions, but may
dominate the solution space without additional control. Using the SEPTOP convergence
error term as a constraint is the supposed safeguard against such erroneous results:
however the nature of this parawmeter is such that decreasingamounts of information are
gained from it as a solution moves further from convergence. As a result, using the
convergence eiTor as a constraint provides little guidance at the beginning stages of the
scarch. In order to increase the selection pressure placed on individuals with more
appropriate characteristics and avoid undesirable premature convergence, a third objective
of maximizing heliocentric revolutions is added. This provides an objective inversely
related to time of flight. and produces a more balanced Pareto optimization.
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RESULTS

Control Parameters

Two test cases were run to provide proof-of-concept for the hybridized method.
The control parameters used in each case are listed in Table 1. Selection and crossover
operators were implemented with no mutation in order to maintain consistency with
previous testing. Niching parameters were calculated based upon the methods provided
in Ref. 11, setting ¢, the induced number of niches, to 15 -- the same value proportional to
population size as in the diagnostic test functions. Existing methodologies'? for
establishing Gaae are only rough guides however, since they require knowledge of the
search space for each optimization problem a priori. (uidance for population sizing and
maximum gencration determination for hybridized methods was found to be nonexistent
at the time of this study, therefore population sizing and number of generations run were
determined experimentally through both trial and ervor and limits on processing capacity.
A Delta I1 7925 launch vehicle was used for both test cases along with a single 30 ¢cm
xenon engine for spacecraft propulsion. A 3.0 kw solar array was used for the flyby case,
and a 5.2 kw solar array for the rendezvous case. '

Table 1
Control Parameters for Pareto Trajectory Oplimizations

Control Parameter Parameter Value
Population Size 150
String Length 80
Probability of crossover 1.0
Probability of mutation 0.0

Oaare 0.033

a 2.0
Number of parameters 8
Number of objectives 3
Nurmber of constraints 1

Earth-Mars Flyby

The first case was an Earth-Mars flyby trajectory.  Trajectory types were
constrained to types [-II (0.0 to 1.0 heliocentric revolutions). The time of flight
parameter was bound between approximately two and twenty months, a time span
predicted to be large enough to encompass the designated trajectory types. Launch date
was fixed at September 1, 20085, a date close to the optimum ballistic launch date.

The genetic search was executed for 20 generations, resulting in the family of
Pareto optimal trajectories illustrated in Figure 1. For the purposes of this study. the
term “family™ refers to a grouping of solutions in the Pareto space, each related to one
another through a continuous Pareto curve. Recall that for an individual to be Parcto
optimal means that no other individual has a lower costs in all three objective criteria
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(mass, time of flight and heliocentric revolutions.) The solid line shown on Figure 1
indicates the actual Parcto curve, generated by iterative calls to SEPTOP. Individuals
representing converged Pareto optimal trajectories are indicated with an x. Solutions for
which trajectory plots have been included arc additionally labeled by individual number.
Of the 150 members of the population. 112 were determined to be converged Pareto
optimal trajectories. These 112 solutions reside in an evenly distributed manner on the
actual Pareto curve, demonstrating the hybridized NSGA’s ability to discover the Pareto
relationships for a given low-thrust trajectory optimization problem.

Maxs Delivered to Target ikg b

Tranafor Time fyrs »

Heliocentnic Revolutions

Figure 1 Pareto front for Earth-Mars flyby trajectory case at generation 20

The addition of the heliocentric revolutions objective, while an effective strategy
for producing viable solutions, also allows for the generation of solutions which are not
Pareto optimal with respect to the trade study strictly between mass delivered and time
of flight. This third objective allows for the generation of trajectories with maximal
revolutions, but inferior performance and times of flight. It can be seen from Figure 2 that
several of the trajectories generated are non-Pareto optimal with respect to the
performance vs. transfer time trade. They inbabit the far right end of the time of flight
spectrum (transfer time > 1.25 yrs.) At this point of the graph, performance falls off as
transfer time continues to increase. Trajectories in this region arc of little use since
alternatives exist which deliver greater payloads in less time. These solutions. however.
are casily identitied for exclusion from final consideration,
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Figure 2 Mass delivered vs. time of flight for Earth-Mars flyby Pareto optimal trajectories
Figures | and 2 reveal that the optimization produced a family of solutions
defining a Pareto optimal front which exists as a smooth curve in the three-dimensional
objective space rather than a surface of Pareto optimal points. Figure 3 illustrates the
indexed individuals, whose comesponding trajectories span the entire family of solutions
along the Pareto curve. As is the case for all trajectory plots to follow, solid line
segments represent thrusting arcs, and dashed Jine segments coast arcs. From these three
figures, some interesting observations can be made.

The Pareto front is rooted at individual 8. As transfer time increases, mass
delivered rises sharply, with gains in perfonmance tapering off as more significant thrust
arcs begin to appear in the vicinity of individual 91. It can be seen from Figures 1 and 3
that the first portion of the Pareto front - the scction of the curve approximately between
individuals 8 and 41 - corresponds to tvpe [ trajectories consisting of no more than 0.5
heliocentric revolutions, with flight paths bound by Earth and Mars orbits. Performance
againpicks up following the inflection point at 0.5 revolutions (0.8 vrs.), as outbound
trajectorics transition to inbound. The second portion of the front acquires maximum
performance at individual 63 with a delivered mass of 913.96 ke. Bcyond this point,
performance decreases sharply, and individuals are no longer nondominated with respect
to the objectives of mass delivered and time of flight.

10
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Figure 3 Earth-Mars flyby trajectories for indexed individuals

Earth-Mars Rendezvous
The second set of results are those for the optimization of Earth-Mars rendezvous

trajectories. Trajectories were restricted to types II through VI (0.5 to 3.0 heliocentric
revolutions), flight time bound between approximately 10 months and 3.5 vears, and
launch date again fixed at September 1, 2005. Figure 4 illustrates the population of
converged Pareto optimal trajectories at generation 30. TIn this case, 91 of the 150
population members were nondominated.
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Figure 4 Parcto frouts for Earth-Mars rendezvous trajectory case at geaeration 30
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Three distinet groupings of Pareto optimal individuals were identified. These
were againdefined by curves in the three-dimensional objective space. with an outlying
individual (individual 147) indicating a fourth area of Pareto optimality. Figure 5 reveals
the larpest and most evenly distributed family in the Pareto space - bound by individuals
44 and 36 - w be the largely dominating subgroup. All but one of the trajectories
comprising the other three families are not dominated by members of this group with
respect to the mass delivered vs. time of flight trade. As in the first trajectory case, these
individuals are a small subpopulation which can be easily identified for exclusion from
final consideration since alternative solutions exist which deliver greater payloads in less
timc.
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Figure 5 Mass delivered vs. time of flight for Earth-Mars rendezvous Pareto optimal trajectorics

Beginningwith individual 44 (Figure 6) from the largest family with a delivery
mass of 685.28 kg, performance increases rapidly with increasing transfer time. This
performance plateaus as a coast arc appears in the trajectories neighboring individual 73,
and delivery masses reach approximately 862 kg. Only very small improvements in mass
delivered are seen on the section of the curve between individuals 73 and 72. A second
coast arc appears producing a burn-coast-burn-coast sequence for these solutions. In the
vicinity of individual 72, an additional burn is appended creating burn-coast-burn-coast-
burn trajectories and performance again rises. Performance for this subgroup ot solutions
approaches its maximumas trajectories transition back to a burn-coast-burn structure at
individual 36 with a mass delivered of §84.10.
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Figure 6 Representative trajectorics for Earth-Mars rendezvous dominant family
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Figure 7 Representative trajectories for Earth-Mars rendezvous novel family
The small family of solutions whose population resides between individuals 132

and 22 is also worthy of discussion due to the high performance and novel trajectory
structure (Figure 7) existent in its members. These solutions begin by taking an inward
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direction and spend some time performing heliocentric revolutions within or just outside
ot Earth orbit before spiraling out to Mars. [n thesc subjects, two revolutions are made to
increase the spacecraft’s orbit inclination to more closely match that of Mars™ before the
trajectory progresses outward. A significant increase in performance is seen as flight
times increase. The minimum mass delivered for this subset of the population is 773.33
kg (individual 132) with a maximum of 911.78 (individual 22) - the highest pavload
delivery in the population.

Earth-Mars Rendezvous On-Demand

The high performance obtained by members of this Parcte family of novel
solutions prompted further investigation iuto the potential of such a trajectory class. The
control parameters for the trajectory with the highest performance (individual 22 with
911.78 kg) were extracted, and the SEPTOP software run to compute the performance
statistics for a trajectory of this tvpe over a rauge of launch dates spanning approximately
one Martian synodic period. For purposes of comparison, the same control parameters
were also used to generate series of trajectorics over the same range of launch dates with
transfer times of 1.5, 2.5, and 3.0 vears.

Results of this analysis are summarized in Figure 8. The dashed curves in the
figure vepresent multiple revolution SEPTOP solutions (2 and 3 revolutions) possessing
flight times ranging from 2.3 to 3.55 vears. The solid curve provides a comparison with a
more typical SEPTOP solution: 1.5 years and less than 1 heliocentric revolution. These
curves reveal a continuous period of launch dates for a flight time of 3.35 ycars, all with
final spacecraft mass greater than 900 kg. Shorter flight times with very large (but not
continuous) launch peniods are also available, such as the 2.5 vear curve which has a
launch period close to one year with performance greater than 900 kp.
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Figure 8 Earth-Mars Rendczvous performance for various flight times
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CONCLUSION

Based upon the results seen in this study. the hybridization of a Pareto genetic
algorithm with a calculus-of-variations optimizer as a local improvernent procedure
proves an etfective method for generating sets of optimal interplanetary low-thrust
trajectories. Families of optimal trajectories were obtained in each test case. with family
members related through continuous Pareto curves. Best results were obtained for
simple, low-rev trajectories. As trajectory complexity increased, populations were
distributed less evenly over apparent Pareto curves. ‘These population distributions may
improve with further penerational cycles, discovering new portions of Pareto curves or
surfaces, or filling in those partially populated at algorithm termination.

The algorithm also proved useful in producing novel trajectories. The new
solutions discovered possessed both non-intuitive structures and very high performance.
Unique trajectories found by the genetic search were used to generate a new and versatile
trajectory class with a continuous period of launch dates and performance greater than
900 kg.
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